y=In(1-√x)/(1-√x)的微分

问题描述:

y=In(1-√x)/(1-√x)的微分

设 t=1-√x,则 t'=-1/(2√x);
y'=[lnt/t]'=[(1-lnt)/t²]*t'=(1-lnt)/[-t²*2√x]
=[1-ln(1-√x)]/[-2(1-√x)²*√x];
dy=y'dx;