反常积分∫[1/x(1+x^2)]dx等于多少,积分上下限分别为+∞,1.为什么令x=tant求不对
问题描述:
反常积分∫[1/x(1+x^2)]dx等于多少,积分上下限分别为+∞,1.为什么令x=tant求不对
答
∫dx/[x(1+x^2)]=-∫dx/[x^3(1/x^2+1)]=-(1/2)∫d(1/x^2)/(1+1/x^2)
=(-1/2)ln(1+1/x^2)+C
∫[1,+∞] dx/[x(1+x^2)]
=(-1/2)ln1-(-1/2)ln2
=(1/2)ln2
∫dx/[x(1+x^2)] x=tant =∫cottdt=ln(sint) +C
-1