已知一个三角形可以被分成两个等腰三角形.若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.

问题描述:

已知一个三角形可以被分成两个等腰三角形.若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.

①原三角形是锐角三角形,最大角是72°的情况:如图∠ABC=∠ACB=72°,∠A=36°,AD=BD=BC,则最大角是72°;,②原三角形是直角三角形,最大角是90°的情况:如图∠ABC=90°,∠A=36°,AD=CD=BD,;③原三角形是钝...
答案解析:分为以下情况:
①原三角形是锐角三角形,最大角是72°的情况;
②原三角形是直角三角形,最大角是90°的情况;
③原三角形是钝角三角形,最大角是108°的情况;
④原三角形是钝角三角形,最大角是126°的情况;
⑤原三角形是钝角三角形,最大角是132°的情况.
考试点:等腰三角形的性质;三角形内角和定理.


知识点:本题主要考查了等腰三角形的性质及三角形内角和定理;分情况讨论是解决本题的关键,本题有一定的难度,大部分学生思考没那么全面.