如图,点A从原点出发沿数轴向左运动,同时点B从原点出发沿数轴向右运动,4秒钟后,两点相距16个单位长度,已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、点B运动的速度,并在数轴上标出点A、B两点运动4秒后所在的位置.(2)若A、B两点从(1)中位置开始,仍以原来的速度同时沿数轴向左运动,几秒时原点恰好处在点A点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点又立即返回向A点运动,如此往返,直到B点追上A点时,点C一直以10单位长度/秒的速度运动,那么点C从开始运动到停止运动,行驶的路程是多少单位长度.

问题描述:

如图,点A从原点出发沿数轴向左运动,同时点B从原点出发沿数轴向右运动,4秒钟后,两点相距16个单位长度,已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)

(1)求出点A、点B运动的速度,并在数轴上标出点A、B两点运动4秒后所在的位置.
(2)若A、B两点从(1)中位置开始,仍以原来的速度同时沿数轴向左运动,几秒时原点恰好处在点A点B的正中间?
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点又立即返回向A点运动,如此往返,直到B点追上A点时,点C一直以10单位长度/秒的速度运动,那么点C从开始运动到停止运动,行驶的路程是多少单位长度.

(1)设点A的速度为每秒t个单位,则点B的速度为每秒3t个单位,由题意,得
4t+4×3t=16,
解得:t=1,
所以点A的速度为每秒1个单位长度,则点B的速度为每秒3个单位长度.
如图:
(2)设x秒时原点恰好在A、B的中间,由题意,得
4+x=12-3x,
解得:x=2.
所以A、B运动2秒时,原点就在点A、点B的中间;
(3)由题意,得
B追上A的时间为:16÷(3-1)=8,
所以C行驶的路程为:8×10=80单位长度.
答案解析:(1)设点A的速度为每秒t个单位,则点B的速度为每秒3t个单位,由甲的路程+乙的路程=总路程建立方程求出其解即可;
(2)设x秒时原点恰好在A、B的中间,根据两点离原点的距离相等建立方程求出其解即可;
(3)先根据追击问题求出A、B相遇的时间就可以求出C行驶的路程.
考试点:一元一次方程的应用;数轴.


知识点:本题考查了列一元一次方程解实际问题的运用,数轴的运用,行程问题的相遇问题和追及问题的数量关系的运用,解答时根据行程问题的数量关系建立方程是关键.