△ABC是等腰直角三角形,D是斜边AB的中点,点D在AC上,点F在BC上,且DE⊥DF 连接EF,若AB=4,那么EF的最小△ABC是等腰直角三角形,D是斜边AB的中点,点D在AC上,点F在BC上,且DE⊥DF连接EF,若AB=4,那么EF的最小值是 .O是斜边AB的中点

问题描述:

△ABC是等腰直角三角形,D是斜边AB的中点,点D在AC上,点F在BC上,且DE⊥DF 连接EF,若AB=4,那么EF的最小
△ABC是等腰直角三角形,D是斜边AB的中点,点D在AC上,点F在BC上,且DE⊥DF
连接EF,若AB=4,那么EF的最小值是 .
O是斜边AB的中点

AB边的中点怎么在AC上

∵△ABC是等腰直角三角形,D是斜边AB的中点,AB=4
∴CD是AB边上的中线和高,是∠ACB的角平分线
∴∠A=∠B=∠ACD=∠BCD=45°,AD=BD=CD=AB/2=2
∵DE⊥DF,∠EDF=∠CDB=90°
∴∠EDC=∠FDB=90°-∠CDF
又:∠ECD=∠FBD=45°,BD=CD=2
∴△ECD 全等 △FBD
∴DE=DF,EC=FB
∴△EDF也是等腰直角三角形
∴EF = √2 DF
BC=AB*√2/2 = 2√2
设FB=x,x∈(0, 2√2)
则DF^2 = BD^2+BF^2-2*BD*BF*cos45° = 2^2+x^2-2*2*x*√2/2 = x^2-2√2x+4 = (x-√2)^2+2
DF = √ [ (x-√2)^2+2]
当x = √2时,DF有最小值√2
此时EF有最小值=√2*DF=√2*√2 = 2

建立以C为原点的直角坐标系,A( ,0)B(0, )O( ,)
设E(a,0)F(0,b)
EF^2=a^2+b^2
OE⊥OF
a+b=2bei de gehao2
最小值为2 数形结合也可以就是中位线

E在哪里?

连接DC,∵D点是斜边中点,则AD=CD=BD=½AB=2,∠A=45°=∠FCD,∠ADE+∠EDC=90°=∠EDC+∠CDF,∴∠ADE=∠CDF,∴△ADE≌△CDF﹙ASA﹚,∴DE=DF,∴直角△EDF是等腰直角△,∴要使EF最短,则只要DF最短,在直角△ABC内,...

题目有误,AC上的点是E不是D,如果这样的话,答案是2.

应该是“△ABC是等腰直角三角形,D是斜边AB的中点,点E在AC上,点F在BC上,且DE⊥DF
连接EF,若AB=4,那么EF的最小值是__________。”吧!
答案:EF的最小值是AB/2=2。