求∫arcsin√x/√x dx如题
问题描述:
求∫arcsin√x/√x dx
如题
答
令a1=a
a5+a7=10
(a+4d)+(a+6d)=10
2a+10d=10
a+5d=5
S11=11a+(10*11/2)d
=11a+55d
=11(a+5d)
=11*5
=55
答
原式=2∫arcsin√xd√x
=2√xarcsin√x-2∫√xdsrcsin√x
=2√xarcsin√x-2∫√x*1/(1-x)*1/(2√x)dx
=2√xarcsin√x-∫dx/(1-x)
=2√xarcsin√x+ln|1-x|+C