高二数学必修五第一章的一道等差数列的题,最好指明做法,等差数列{an}的前n项和为Sn,已知S6=36,Sn=324,若S(n-6)=144(n>6),则n的值为?

问题描述:

高二数学必修五第一章的一道等差数列的题,最好指明做法,
等差数列{an}的前n项和为Sn,已知S6=36,Sn=324,若S(n-6)=144(n>6),则n的值为?

∵在等差数列中,若m+n=p+q,则am+am=ap+aq
∴由数列的前6项的和+最后的六项的和=S6+(Sn-S(n-6))
=(a1+a2+a3+a4+a5+a6)+(a(n-5)+a(n-4)+a(n-3)+a(n-2)+a(n-1)+an)
=6(a1+an)
∴6(a1+an)=36+(324-144)=216
a1+an=36
又由等差数列的前n项和公式Sn=n(a1+an)/2,得
324=n×36÷2
n=18.

Sn=na1+n(n-1)d/2=324 (1)
S6=6a1+15d=36 (2)
两式相减得
(n-6)a1+[n(n-1)/2-15]d=288
S(n-6)=(n-6)a1+[(n-6)(n-7)/2]d=144 (3)
两式相减得(6n-36)d=144
(n-6)d=24
d=24/(n-6) (4)
代入(3)得
a1=12(19-n)/(n-6) (5)
(4)(5)代入(2)得
72(19-n)+15*24=36(n-6)
108n=36*(38+10+6)=18*108
n=18

n=18 a1=1 差值为2

等差数列前n项和Sn=na1 +n*(n-1)*d/2
n=6时
S6=6a1 +6*5*d/2
S6=6a1 +15d
36=6a1 +15d
a1=6-(5/2)d
Sn=na1 +n*(n-1)*d/2=324
将a1代入
6n-5nd/2 +n*(n-1)*d/2=324
6n + n[n-6]d/2=324
d/2 = (324-6n)/[n(n-6)],
S(n-6)=[(n-6)a1 +(n-6)*(n-7)*d/2]=144
(6-5d/2)(n-6)+n(n-6)d/2 - 7(n-6)d/2=144
将上面求得的d/2代入
化简
得到n=18

Sn=na1 +n*(n-1)*d/2=324 .1S6=6a1 +6*5*d/2=36.2Sn-S(n-6)=a(n-5)+a(n-4)+a(n-3)+a(n-2)+a(n-1)+an=180S6=a1+a2+a3+a4+a5+a6=36两式相减得a(n-5)-a1+a(n-4)-a2+a(n-3)-a3+a(n-2)-a4+a(n-1)-a5+an-a6=6(n-6)d=14...

an=a+(n-1)r
s6: 6a+5(1+5)r/2 =36
sn: na+n(n-1)r/2 =324
s(n-6):(n-6)a+(n-6)(n-7)r/2 =144
由上述三式可解出a=1,r=2,n=18