已知2/x=3/y=4/z,求4x^2+2yz+z^2/x+y+z*x-z-y/8x^2+4yz+2z^2的值

问题描述:

已知2/x=3/y=4/z,求4x^2+2yz+z^2/x+y+z*x-z-y/8x^2+4yz+2z^2的值

两种方法:1、一般法设2/x=3/y=4/z=1/k,则x=2k,y=3k,z=4k,于是4x^2+2yz+z^2/x+y+z*x-z-y/8x^2+4yz+2z^2=[4(2k)^2+2*3k*4k+(4k)^2]/(2k+3k+4k) * (2k-4k-3k)/[8(2k)^2+4*3k*4k+2(4k)^2]=(56k^2)/(9k) * (-5k)/[(112k^...