有m个元素的集合A,有n个元素的集合B,问有多少不同的 从A到B的的满射函数?请附说明,N^M和M^N都是不正确的,考虑反例A={1,2},B={3,4}。则满射只有两种:1)f={,} 2)f={}

问题描述:

有m个元素的集合A,有n个元素的集合B,问有多少不同的 从A到B的的满射函数?
请附说明,
N^M和M^N都是不正确的,考虑反例A={1,2},B={3,4}。则满射只有两种:1)f={,} 2)f={}

n的m次方

以上答案都不对。
从A到B的函数一共有n^m个.
楼上考虑了“B中的第一个元素的原象可以是A中m个元素的任何一个”,但是函数还要求A中每一个元素在B中的象是唯一的,所以“B中的第二个元素的原象也可以是A中m个元素的任何一个”是错误的

每一个A中的元素对应到B中都有n种方式,那么共有n*n*n*=n^m

Y中的任意元任意元素y都是X中某元素的像,则称f为X到Y上的映射或满射。也就是说,X中可以有空元素,但Y不能有。自己算吧,太多了。不过可以肯定不是n的m次方。

如果m

所谓从A到B的的满射是指对于任意的y属于B,存在x属于A,使得f(x)=y
也就是B中的n个元素必须都有且仅有一个原象.
即B中的第一个元素的原象可以是A中m个元素的任何一个,这里就有m种取法,同样B中的第二个元素的原象也可以是A中m个元素的任何一个,这里就又有m种取法,而B中一共有n个象,所以满射函数的个数即为m*m*...*m,n个m相乘,即m^n,一楼的正好弄反了.
希望我回答你你能明白.

如楼上所言, Y中的任意元任意元素y都是X中某元素的像,则称f为X到Y上的映射或满射。
同时A中任意元素x均可成为B中元素y的原像,即B中每个元素y有m种选项择,故答案为 m*m*m*...=m^n