已知:△ABC的三边长分别为a,b,c,且a,b,c满足等式:a²+b²+c²=ab+ac+bc试判断此三角形形状

问题描述:

已知:△ABC的三边长分别为a,b,c,且a,b,c满足等式:a²+b²+c²=ab+ac+bc
试判断此三角形形状

a²+b²+c²=ab+bc+ca
a²+b²+c²-ab-bc-ac=0
两边乘2
2a²+2b²+2c²-2ab-2bc-2ac=0
(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)=0
(a-b)²+(b-c)²+(c-a)²=0
所以a-b=0,b-c=0,c-a=0
a=b,b=c,c=a
所以a=b=c
所以是等边三角形

△ABC为等边三角形.理由如下:
∵a2+b2+c2-ab-bc-ac=0,
∴2a2+2b2+2c2-2ab-2bc-2ac=0,
∴a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0,
即(a-b)2+(b-c)2+(c-a)2=0,
∴a-b=0,b-c=0,c-a=0,
∴a=b=c,
∴△ABC为等边三角形.