∫(sinx)^2/[1+e^(-x)] dx 积分上下限(π/4,π/4)怎么算?

问题描述:

∫(sinx)^2/[1+e^(-x)] dx 积分上下限(π/4,π/4)怎么算?

上下限相等? 那不就是零么
如果是正负的话,那个,我也算不出来...用软件计算出来约等于 0.14...
所以猜测答案是 pi-3 ,哈哈

注:此题的上下限有错,应该是积分上下限(-π/4,π/4)!原式=∫(-π/4,π/4)(sinx)^2/[1+e^(-x)]dx (∫(-π/4,π/4)表示从-π/4到π/4积分)=∫(-π/4,0)(sinx)^2/[1+e^(-x)]dx+∫(0,π/4)(sinx)^2/[1+e^(-x)]dx=-∫(π...