若x+y+z=7,x的平方+y的平方+z的平方=11,xyz=6,则x分之1+y分之1+z分之1的值
问题描述:
若x+y+z=7,x的平方+y的平方+z的平方=11,xyz=6,则x分之1+y分之1+z分之1的值
答
(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)=7=11+2(xy+yz+xz) 所以(xy+yz+xz)=2
1/x+1/y+1/z+(xy+yz+xz)/(xyz)=2/6=1/3
答
(x+y+z)^2=x^2+2xy+y^2+2xz+2yz+z^2=49 x^2+y^2+z^2=11
2xy+2yz+2xz=49-11=38
xy+xz+yz=19
1/x+1/y+1/z=xy+xz+yz/xyz=19/6
答
(x+y+z)^2 = x^2+y^2+z^2+2xy+2xz+2yz = 49 = 11 +2(xy+yz+xz)->xy+yz+xz = 19
1/x + 1/y +1/z = (yz+xz+xy)/xyz = 19/6
答
首先,x+y+z = 7
所以 1/x+y+z = 1/7
x^2 + y^2 + z^2
= (x + y + z)^2 - 2(xy + yz + xz)
= 49 - 2(xy + yz + xz)
= 11
所以可以求得 xy + yz + xz = 19
1/x + 1/y + 1/z = xy + yz + xz / xyz = 19/6
所以1/x + 1/y + 1/z = 19/6
或者3又1/6也行