已知三角形ABC中,AB=2,BC=1,角ABC=120度,平面ABC外一点P满足PA=PB=PC=2,则三棱椎P-ABC的体积是多少?
问题描述:
已知三角形ABC中,AB=2,BC=1,角ABC=120度,平面ABC外一点P满足PA=PB=PC=2,则三棱椎P-ABC的体积是多少?
答
∵PA=PB=PC=2,
∴椎顶点P在底面投影为ΔABC的外心
∴先求外接圆半径R
∵CA²=2²+1²-2*2*1cos120º=7,==>CA=√7
∴R=CA/2sin120º=√7/2(√3/2)=√7/√3=√21/3
∴高=√[2²-(√21/3)²]=√15/3
SΔABC=1/2×2×sin120º=√3/2
三棱椎P-ABC的体积=1/3×√3/2×√15/3=√5/6