已知α为锐角,求证:sinα+cosα>1请问=√2(cos45 sinα+sin45 cosα) 是怎么变到=√2sin(α+45)
问题描述:
已知α为锐角,求证:sinα+cosα>1
请问=√2(cos45 sinα+sin45 cosα) 是怎么变到=√2sin(α+45)
答
证明:
sinα+cosα=√2(√2/2sina+√2/2cosa)
=√2(sina*cos45`+cosa*sin45`)
=√2*sin(a+45`)
因为 α为锐角
所以 0 所以 45` 所以 1 所以 sinα+cosα>1
答
sinα+cosα
=√2(√2/2sinα+√2/2cosα)
=√2(cos45 sinα+sin45 cosα)
=√2sin(α+45)
0