已知3阶方阵A的特征值为-1 2 3 ,方阵B与A相似则|B^-1+B-E|=?
问题描述:
已知3阶方阵A的特征值为-1 2 3 ,方阵B与A相似则|B^-1+B-E|=?
答
相似矩阵有相同的特征值,所以B的特征值是-1,2,3
B可逆,若B的特征值是λ,则B^-1的特征值是λ^-1
而B^-1+B-E的特征值是(λ^-1)+λ-1
所以B^-1+B-E的特征值是-3,3/2,7/3
|B^-1+B-E|=特征值的乘积=-21/2