已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1. (1)设bn=an+1-2an,求证{bn}是等比数列 (2)设Cn=an2n,求证{Cn}是等差数列 (3)求数列{an}的通项公式及前n项和公式.
问题描述:
已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1.
(1)设bn=an+1-2an,求证{bn}是等比数列
(2)设Cn=
,求证{Cn}是等差数列an 2n
(3)求数列{an}的通项公式及前n项和公式.
答
(1)Sn+1=Sn+an+1=4an-1+2+an+1∴4an+2=4an-1+2+an+1∴an+1-2an=2(an-2an-1)即:bnbn−1=an+1−2anan−2an−1=2 (n≥2)且b1=a2-2a1=3∴{bn}是等比数列(2){bn}的通项bn=b1•qn-1=3•2n-1∴Cn+1−Cn=an+1...