如图,P是等边△ABC内一点,∠PBQ=60°,且BQ=BP,连接CQ.猜想AP与CQ之间的大小关系,并证明.
问题描述:
如图,P是等边△ABC内一点,∠PBQ=60°,且BQ=BP,连接CQ.猜想AP与CQ之间的大小关系,并证明.
答
AP=CQ,
理由如下:∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°.
∵∠PBQ=60°,
∴∠ABP=∠CBQ=60°-∠PBC.
在△ABP和△CBQ中,
,
AB=CB ∠ABP=∠CBQ BP=BQ
∴△ABP≌△CBQ(SAS),
∴AP=CQ.