tan(π-a)=2,求:(sin^2a-sinacosa+3cos^2a)/(2sin^2a-7cos^2a)

问题描述:

tan(π-a)=2,求:(sin^2a-sinacosa+3cos^2a)/(2sin^2a-7cos^2a)

由tan(π-a)=2可知tan a =-2,于是将式子的分子分母同除以cos^2a,则可得(tan^2a-tan a+3)/(2tan^2a-7)=(4+2+3)/(8-7)=9