1,a>0,b>0,求y=x/ax²+b的值域 2,y=ax²+x+1/x+1(x>-1,且a≠0)求其最小值

问题描述:

1,a>0,b>0,求y=x/ax²+b的值域 2,y=ax²+x+1/x+1(x>-1,且a≠0)求其最小值

1,由y=x/(ax²+b),a>0,b>0,故ax²+b>0,故x∈R,
故ayx²+by=x,故ayx²-x+by=0,
当y=0时,x=0,
当y≠0时,由a>0,b>0,故ay≠0,Δ=1-4ay by≥0,故4aby ²≤1,故y ²≤1/4ab,
故-√(ab)/(2ab)≤y ≤√(ab)/(2ab),故值域[-√(ab)/(2ab),√(ab)/(2ab)]
2,由y=ax²+x+1/(x+1),
故y的导数=2ax+1-1/(x+1)²
=[2ax(x+1)²+(x+1)²-1]/(x+1)²=x[2ax²+(4a+1)x+2a+2]/(x+1)²,
故Δ=(4a+1)²-8a(2a+2)=-8a+1,
(1)当Δ=-8a+11/8,2ax²+(4a+1)x+2a+2>0,令y的导数=0,故x=0,
若x0,故x=0时,y的最小值为1,
(2)当Δ=-8a+1=0时,即a=1/8,方程根为x=-2,由x>-1,
若-10,即a