m,n满足等式m^2=5n-2,n^2=5m-2,m不等于n,试求m+n的值 m^3-5mn-2n的值
问题描述:
m,n满足等式m^2=5n-2,n^2=5m-2,m不等于n,试求m+n的值 m^3-5mn-2n的值
答
m^2=5n-2,n^2=5m-2,将等式相加得:m^2-n^2=5n-2-(5m-2)=5n-5m所以(m+n)(m-n)=5(n-m),所以m+n=-5m^2=5n-2,所以m^2-5n=-2m^3-5mn-2n=m(m^2-5n)-2n=-2(m+n)=10