已知向量a=(2√3sinx,cosx),向量b=(cosx,2cosx),函数f(x)=向量ab
问题描述:
已知向量a=(2√3sinx,cosx),向量b=(cosx,2cosx),函数f(x)=向量ab
1.求f(x)在[0,π/2]上的值域 2.在三角形ABC中,若f(A)=2,sinB=3sinC,三角形面积为3√3/4,求a
第一问我得出了f(x)=2sin(2x+π/6)+1,
答
f(x)=2sin(2x+π/6)+1
1
x∈[0,π/2],2x∈[0,π]
即:2x+π/6∈[π/6,7π/6]
故:sin(2x+π/6)∈[-1/2,1]
故:y∈[0,3]
2
f(A)=2sin(2A+π/6)+1=2
即:sin(2A+π/6)=1/2
A∈(0,π),2x∈(0,2π)
即:2A+π/6∈(π/6,13π/6)
故:2A+π/6=5π/6
即:A=π/3
S=(1/2)|AB|*|AC|*sinA=(1/2)bcsin(π/3)=3√3/4
即:bc=3
sinB=3sinC,即:b=3c
故:c=1,b=3
故:a^2=b^2+c^2-2bccosA
=10-6/2=7
即:a=√7