某曲线在某点的正切值

问题描述:

某曲线在某点的正切值
find the equation of the tangent to the curve y=50/(2x-1)^,at point (3,2),giving your answer in the form ax+by+c=0

y=50/(2x-1)^2?/, y'=-100(2x-1)^(-3)*2=-200/(2x-1)^3k= tanα=-200/125=-1.6
切线为 y-2=-1.6(x-2) y=-1.6x+5.2