已知m/n=5/3,求分式m/(m+n)+m/(m-n)-n^2/(m^2-n^2)的值

问题描述:

已知m/n=5/3,求分式m/(m+n)+m/(m-n)-n^2/(m^2-n^2)的值

原式=(m²-mn+m²+mn)/(m-n)(m+n)-n²/(m²-n²)
=(2m²-n²)/(m²-n²)
同时除以n²得
(2(m/n)²-1)/((m/n)²-1)=(2×(5/3)²-1)/((5 /3)²-1)=41/16

m/(m+n)+m/(m-n)-n^2/(m^2-n^2)=m(m-n)/(m+n)(m-n)+m(m+n)/(m-n)(m+n)-n^2/(m^2-n^2)=(m(m-n)+m(m+n))/(m^2-n^2)-n^2/(m^2-n^2)=(2m^2))/(m^2-n^2)-n^2/(m^2-n^2)=(2m^2-n^2)/(m^2-n^2)m/n=5/3m=5n/3带入=(2(5n...