【初三数学】已知抛物线y=2x^2+x+1和直线y=4/3x+m,如果直线被抛物线所截线段长为5/18,求m的值
问题描述:
【初三数学】已知抛物线y=2x^2+x+1和直线y=4/3x+m,如果直线被抛物线所截线段长为5/18,求m的值
已知抛物线y=2x^2+x+1和直线y=4/3x+m,如果直线被抛物线所截线段长为5/18,求m的值
答
设直线和抛物线交点为A、B二点,A(x1,y1),B(x2,y2),
4/3x+m=2x^2+x+1,
2x^2-x/3+1-m=0,
6x^2-x+3-3m=0,
x=[1±√(72m-71)]/12,
y1=4x1/3+m,
y2=4x2/3+m,
y1-y2=(4/3)(x1-x2)
根据两点距离公式,
|AB|=√[(x1-x2)^2+(y1-y2)^2]
=|x1-x2|√(1+16/9)
=(5/3)|x1-x2|=(5/3)(1/12)[1+√(72m-71)-1+√(72m-71)]
=(5/3)(1/12)2√(72m-71)
=(5/18)√(72m-71)
=5/18,
∴√(72m-71)=1,
72m-71=1,
∴m=1.