分式的加减计算:(1/x-1)+(1/x+1)-(2x/x^2+1)-(4x/x^4+1)-(8x/x^8+1) 注:“/”指除号.

问题描述:

分式的加减计算:(1/x-1)+(1/x+1)-(2x/x^2+1)-(4x/x^4+1)-(8x/x^8+1) 注:“/”指除号.

(1/x-1)+(1/x+1)-(2x/x^2+1)-(4x/x^4+1)-(8x/x^8+1)=2x/(x²-1)-(2x/x^2+1)-(4x/x^4+1)-(8x/x^8+1)
=4x/(x^4-1)-(4x/x^4+1)-(8x/x^8+1)=8x/(x^8-1)-(8x/x^8+1)=16x/(x^16-1)

(x-1)*(x+1)=x^2-1
(x^2-1)(x^2+1)=x^4-1
....
答案:16X/(x^16-1)

(1/x-1)+(1/x+1)-(2x/x^2+1)-(4x/x^4+1)-(8x/x^8+1)
=(x+1+x-1)/(x^2-1)-(2x/x^2+1)-(4x/x^4+1)-(8x/x^8+1)
=[2x(x^2+1)-2x(x^2-1)]/(x^4-1)-(4x/x^4+1)-(8x/x^8+1)
=[4x(x^4+1)-4x(x^4-1)]/(x^8-1) )-(8x/x^8+1)
=[8x(x^8+1)-8x(x^8-1)]/(x^16-1)
=16x/(x^16-1)