如图所示,正方形ABCD中,E、F分别是BC、CD边上的点,AE、DE、BF、AF把正方形分成8小块,各小块的面积分别为S1、S2、…S8,试比较S3与S2+S7+S8的大小,并说明理由.

问题描述:

如图所示,正方形ABCD中,E、F分别是BC、CD边上的点,AE、DE、BF、AF把正方形分成8小块,各小块的面积分别为S1、S2、…S8,试比较S3与S2+S7+S8的大小,并说明理由.

S3=S2+S7+S8.理由:如图,图中S3的面积S3=SABCD-S△ABE-S△BCF-S△CDE-S△ADF+S2+S7+S8化简得S3=BC•CD-12×(BE+EC)×CD-12×(DF+FC)×BC+S2+S7+S8∵BC=CD,∴BC•CD=12×(BE+EC)×CD+12×(DF+FC),故S3=S2...