已知m=2005,求m/(1x2)+m/(2x3)+m/(3x4)...+m/(2003x2004)+m/(2004x2005)的值.

问题描述:

已知m=2005,求m/(1x2)+m/(2x3)+m/(3x4)...+m/(2003x2004)+m/(2004x2005)的值.

∵1/[n(n+1)]=1/n-1/(n+1),
∴m/(1x2)+m/(2x3)+m/(3x4)...+m/(2003x2004)+m/(2004x2005)
=m[1/1-12/2+1/2-1/3+1/3-1/4+…+1/2004-1/2005]
=m(1-1/2005)
=2004m/2005

当m=2005时,
原式=2004。

m/(1×2)+m/(2×3)+m/(3×4)+...+m/(2003×2004)+m/(2004×2005)=m[1/(1×2)+1/(2×3)+1/(3×4)+...+1/(2003×2004)+1/(2004×2005)]=m(1-1/2+1/2-1/3+1/3-1/4+...+1/2003-1/2004+1/2004-1/2005)=m(1-1/2005)=2004m/...