计算:1-3+5-7+9····+97-99

问题描述:

计算:1-3+5-7+9····+97-99

100以内有50个奇数。 50除以2,等于25.【因为这里两个奇数一对。】 并且一对的和为-2. -2×25=-50

1-3+5-7+9-11+...+97-99
=(1-3)+(5-6)+(9-11)+.+(97-99)
=-2*[(99+1)/2/2]
=-2*25
=-50
其中[(99+1)/2/2]可以这么理1,3,5,7,9...99,
100个数,每两个就有一个奇数,100/2就是奇数的个数,再除2就是有多少对(1-3)+(5-6)+(9-11)+.+(97-99)