高中数学证明两集合相等的题求解答 已知A={x|14m+36n,m,n∈Z}.B={x|x=2k,k∈Z},求证:A=B
问题描述:
高中数学证明两集合相等的题求解答 已知A={x|14m+36n,m,n∈Z}.B={x|x=2k,k∈Z},求证:A=B
答
A={x|14m+36n,m,n∈Z}.
14m+36n=2(7m+18n)
∵m,n∈Z
∴(7m+18n)∈Z
把(7m+18n)看成一个整体,也就是说(7m+18n)是一个整数
∵k∈Z
所以2(7m+18n)=2k
即A=B感谢你的回答,但是你只证明了一半,只说明了A∈B但未证明B∈A我的困惑就在证明B∈A上,希望可以解答....孩子你的数学思维啊两个都是整数,那就可以看成两个未知数,那就可以互相等的