设f(x)=x2+ax+b,且1≤f(-1)≤2,2≤f(1)≤4,则点(a,b)在aob平面上的区域的面积是(  ) A.12 B.1 C.2 D.92

问题描述:

设f(x)=x2+ax+b,且1≤f(-1)≤2,2≤f(1)≤4,则点(a,b)在aob平面上的区域的面积是(  )
A.

1
2

B. 1
C. 2
D.
9
2

∵f(x)=x2+ax+b,
由1≤f(-1)≤2得:1≤1-a+b≤2,即0≤-a+b≤1
由2≤f(1)≤4得:2≤1+a+b≤4,即1≤a+b≤3
则点(a,b)在aOb平面上的区域如下图中阴影所示:

由图可得该区域是一个长和宽分别为

2
2
2
的矩形
故该区域的面积S=1
故选B