设x,y满足约束条件3x-y-5≤0,x-y+1≥0,x≥0,y≥0
问题描述:
设x,y满足约束条件3x-y-5≤0,x-y+1≥0,x≥0,y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为10,则a^2+b^2的最小值为
答
3x-y-5≤0,x-y+1≥0,x≥0,y≥0限定区域如图所示z=ax+by(a>0,b>0)的最大值为10∵a>0,b>0∴在A(3,4)处有z最大值10=3a+4bb=-(3/4)a+5/2a^2+b^2=a^2+[-(3/4)a+5/2]^2=25/16a^2-15/4a+25/4对称轴是a=6/5...