令A=1×2+2×3+3×4+…+98×99+99×100且B=12+22+32+…+982+992.那么A-B=_.

问题描述:

令A=1×2+2×3+3×4+…+98×99+99×100且B=12+22+32+…+982+992.那么A-B=______.

1×2+2×3+3×4+…+98×99+99×100
=1×2+(2×3+3×4)+(4×5+5×6)+(6×7+7×8)+…+(98×99+99×100)
=2×12+2×32+2×52+2×72+2×92+…+2×992
=2×(12+32+52…+992
A-B=2×(12+32+52…+992)-(12+22+32+…+982+992
=12+32+52…+992-(22+42+…+982
=12+(32-22+52-42+72-62+…+…+992-982
=1+(5+9+13+…+197)
=1+(5+197)×49÷2
=1+4949
=4950
故答案为:4950.