sin(-19π/6)=;sin(-16π/3)=;cos(-79π/6)=;tan(-26π/3)=;sin(15π/4)=;cos(-60°)-sin(-210°)=?
问题描述:
sin(-19π/6)=;sin(-16π/3)=;cos(-79π/6)=;tan(-26π/3)=;sin(15π/4)=;
cos(-60°)-sin(-210°)=?
答
sin(-19π/6)=sin(-19π/6+4π)=sin(5π/6)=sin(π/6)=0.5
sin(-16π/3)=sin(-16π/3+6π)=sin(2π/3)=√3/2
cos(-79π/6)=cos(-79π/6+14π)=cos(5π/6)=-√3/2
tan(-26π/3)=tan(-26π/3+9π)=tan(π/3)=√3
sin(15π/4)=sin(15π/4-4π)=sin(-π/4)=-√2/2
答
sin(-19π/6)=-sin(2pai+pai+pai/6)=1/2 sin(-16π/3)=-sin(4pai+pai+1/3pai)=根号3/2cos(-79π/6)=cos(79pai/6)=cos(12pai+pai+pai/6)=-根号3/2 tan(-26π/3)=-tan(8pai+2pai/3)=-tan(pai-pai/3)=tan(pai/...