已知f(x)=sin²wx+(根号3/2)sin2wx-(1/2)(x∈R,w>0)若f(x)的最小正周期为2π (1)求f(x)的表达式和f(x)的单调递增区间(2)求f(x)在区间【-(π/6),(5π/6)】的最大值和最小值

问题描述:

已知f(x)=sin²wx+(根号3/2)sin2wx-(1/2)(x∈R,w>0)若f(x)的最小正周期为2π (1)求f(x)的表达式和f(x)的单调递增区间(2)求f(x)在区间【-(π/6),(5π/6)】的最大值和最小值

(1)
f(x)=sin²wx+(根号3/2)sin2wx-(1/2)
=1/2(1-cos2wx)+√3/2sin2wx-1/2
=√3/2sin2wx-1/2cos2wx
=sin(2wx-π/6)
∵f(x)的最小正周期为2π
∴2π/(2w)=2π
∴w=1/2
∴f(x)=sin(x-π/6)
由2kπ-π/2≤x-π/6≤2kπ+π/2,k∈Z
得2kπ-π/3≤x≤2kπ+2π/3,k∈Z
∴f(x)的单调递增区间是
[2kπ-π/3,2kπ+2π/3],k∈Z
(2)
∵x∈【-(π/6),(5π/6)】
∴x-π/6∈[-π/3,2π/3]
∴x-π/6=-π/3,x-π/6时,f(x)取得最小值-√3/2
x-π/6=π/2,x=2π/3时,f(x)取得最大值1
如果满意记得采纳哦!
你的好评是我前进的动力。
(*^__^*) 嘻嘻……
我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!!!

(1)f(x)=sin²wx+(根号3/2)sin2wx-(1/2)=1/2(1-cos2wx)+√3/2sin2wx-1/2=√3/2sin2wx-1/2cos2wx=sin(2wx-π/6)∵f(x)的最小正周期为2π ∴2π/(2w)=2π∴w=1/2∴f(x)=sin(x-π/6)由2kπ-π/2≤x-π/6≤2kπ+π...