化简sin^2x+sin^2y-sin^2xsin^2y+cos^2xcos^2y

问题描述:

化简sin^2x+sin^2y-sin^2xsin^2y+cos^2xcos^2y

sin²x+sin²y-sin²xsin²y+cos²xcos²y
= (sin²x-sin²xsin²y)+sin²y+cos²xcos²y //注:交换顺序
= sin²x(1-sin²y)+sin²y+cos²xcos²y
=sin²xcos²y+cos²xcos²y+sin²y
=cos²y(sin²x+cos²x)+sin²y //注:sin²x+cos²x=1
=cos²y+sin²y
=1

Sin^2x+Sin^2y-Sin^2xSin^2y+Cos^2xCos^2y
= Sin^2x(1- Sin^2y)+Sin^2y+Cos^2x(1- Sin^2y)
= Sin^2x+ Sin^2x Cos^2y+ Sin^2y+ Cos^2x+Cos^2x Sin^2y
=1+Sin^2x Cos^2y+Sin^2y(1-Cos^2x)+Cos^2x
=1+Sin^2x Cos^2y+Sin^2xSin^2y+Cos2^x
=1+Sin^2x( Cos^2y+Sin^2y) +Cos^2x
=1+Sin^2x+Cos^2x
=1+1
=2

sin²x+sin²y-sin²xsin²y+cos²xcos²y
= sin²x+sin²y-sin²xsin²y+(1-sin²x)(1-sin²y)
= sin²x+sin²y-sin²xsin²y+1-sin²x-sin²y+sin²xsin²y
=1