刘老师,再问您最后一道高代题,明天就要考试,希望您能回答,
问题描述:
刘老师,再问您最后一道高代题,明天就要考试,希望您能回答,
设V是n维欧几里得空间,内积记为(α,β),设T是V上的一个正交变换,记V1={α|Tα=α},V2={β|β=α-Tα,α∈V},证明:
①V1,V2都是V的子空间;
②V=V1⊕V2.
答
任取V的一组基,w在这组基下的坐标向量记为x,那么f在这组基下的表示矩阵就是F=I-2xx',问题转化为求F的特征值. 把x张成正交阵Q=(x,*),那么F=QDQ',其中D=diag{-1,1,1,...,1,1},即f有一个特征值是-1,相应的特征向...