求解两道三角恒等变换题
问题描述:
求解两道三角恒等变换题
1.sin(36°+α)sin(54°-α)- cos(36°+α)cos(54°-α)
2.α为第三象限角,sinα=-3/5,求sin(37π/6-α)的值已知cosα=-3/5,π<α<2π,求cos(π/6-α)的值.
答
1,sin(36°+x)sin(54°-x) -cos(36°+x)cos(54°-x)=-cos[(36°+x)+(54°-x)] =cos90°=0.2α为第三象限角,且sinα=-3/5 则cosa=-4/5即sin2a=-24/25 cos2a=7/25sin(37π/6-2α)的值=sin(π/6-2α)=0.5*cos2a-根号3/...