椭圆有两顶点A(-1,0)B(1,0)过其焦点F(0,1)的直线L与椭圆交于C,D.直线AC、BD交于点Q当点P异于A、B两点时求证向量OP点乘向量OQ为定值L与X轴交于点Q
问题描述:
椭圆有两顶点A(-1,0)B(1,0)过其焦点F(0,1)的直线L与椭圆交于C,D.直线AC、BD交于点Q
当点P异于A、B两点时求证向量OP点乘向量OQ为定值
L与X轴交于点Q
答
证明:当直线l与x轴垂直时与题意不符,
设直线l的方程为y=kx+1,(k≠0,k≠±1),C(x1,y1),D(x2,y2),
∴P点的坐标为(-1k,0),
由(Ⅰ)知x1+x2=-2kk2+2,x1•x2=-1k2+2,
且直线AC的方程为y=y1x1+1(x+1),且直线BD的方程为y=y2x2-1(x-1),
将两直线联立,消去y得x+1x-1=y2(x1+1)y1(x2-1),
∵-1<x1,x2<1,∴x+1x-1与y2y1异号,
(x+1x-1)2=y22(x1+1)2y12(x2-1)2=2-2x222-2x12•(x1+1)2(x2-1)2=(1+x1)(1+x2)(1-x1)(1-x2)
=1-2kk2+2-1k2+21+2kk2+2-1k2+2=(k-1k+1)2,
y1y2=k2x1x2+k(x1+x2)+1=k2(-1k2+2)+k(-2kk2+2)+1=-2(1+k)2k2+2k-1k+1,
∴k-1k+1与y1y2异号,x+1x-1与k-1k+1同号,
∴x+1x-1=k-1k+1,解得x=-k,
故Q点坐标为(-k,y0),
OP→•OQ→=(-1k,0)•(-k,y0)=1,
故OP→•OQ→为定值.