设{an}是公差为-2的等差数列,若a1+a4+a7+…+a97=50,则a3+a6+a9+…+a99等于(  ) A.82 B.-82 C.132 D.-132

问题描述:

设{an}是公差为-2的等差数列,若a1+a4+a7+…+a97=50,则a3+a6+a9+…+a99等于(  )
A. 82
B. -82
C. 132
D. -132

因为{an}是公差为-2的等差数列,
∴a3+a6+a9++a99=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)=a1+a4+a7++a97+33×2d=50-132=-82.
故选B