在Rt△ABC中,∠ACB=90°,AC=3,BC=4,P是△ABC所在平面上的一点,PA=PB,且S△PBC=SABC,求PA ,无图

问题描述:

在Rt△ABC中,∠ACB=90°,AC=3,BC=4,P是△ABC所在平面上的一点,PA=PB,且S△PBC=SABC,求PA ,无图

如图9,Rt△ABC中,∠ACB=90°,AC边上的垂直平分线交AC于D,AB于E,延长DE到F,使BF=CE.
(1)四边形BCEF是平行四边形吗?说说你的理由.
(2)当∠A等于多少时,四边形BCEF是菱形,
并说出你的理由.
这是原题吧- -|
1)由DE垂直平分AC,
∴∠ADE=90°
因为∠ACB=90°
∴DF平行于CB
∴∠DEC=∠ECB,∠FEB=∠EBC
因为∠AED=∠FEB(对顶角相等)
△ECB≌△BFE(SSA)
∴EF=BC,及CE=BF,
∴四边形BCEF是平行四边形.
2)当角A 30度得时候BCEF是菱形