若x-y=4, x^3-y^3=28,求x^2+y^2的值?
问题描述:
若x-y=4, x^3-y^3=28,求x^2+y^2的值?
答
x-y=4
(x-y)²=16
x²-2xy+y²=16 ①
∵x³-y³=28
(x-y)(x²+xy+y²)=28
4(x²+xy+y²)=28
x²+xy+y²=7
2x²+2xy+2y²=14 ②
①+②得:
3x²+3y²=14+16
∴x²+y²=10