logx为底的2乘以 log2x为底的4=log8x为底的2

问题描述:

logx为底的2乘以 log2x为底的4=log8x为底的2
答案是x=8 或者x=1/4

log2^2/log2^x*log2^4/log2^(2x)=log2^2/log2^(8x)2(3+log2^x)=log2^x*(1+log2^x)6+2log2^x=log2^x+(log2^x)^2(log2^X)^2-log2^x-6=0[(log2^x)+2][(log2^x)-3]=0log2^x+2=0,log2^x-3=0log2^x=-2,log2^x=3x=2^(-2)=1...