如图,抛物线Y=-X+BX+C与直线Y=1/2X+2

问题描述:

如图,抛物线Y=-X+BX+C与直线Y=1/2X+2
抛物线y=-x2++bx+c与直线y=1/2x+2交于CD两点 其中点C在Y轴上 点D的坐标为(3 ,7/2)点P是Y轴右侧抛物线上的一动点 过点P做PE垂直X 轴于点 交CD于点F 当∠pcf=45时 求点P坐标

C在Y轴上,C在直线上 => C(0,2)
C,D坐标带入抛物线,有
c = 2
7/2 = -9 + 3b + c
故b = 7/2,c = 2
设P坐标(xp,-xp^2 + 7/2xp + 2)
因∠pcf = 45度,直线CF斜率为tanTheta = 1/2,则直线CP的斜率为
tan(Theta - Pi/4) = (1/2 - 1)/(1 + 1/2 * 1) = - 1/3
则直线CP方程为y = -1/3x + 2
将CP方程带入抛物线方程,有
-xp^2 + 7/2xp + 2 = -1/3xp + 2
因此xp = 0(依题设舍去)或xp = 23/6
所以P(23/6,13/18)即为所求