若(1-2x)^5=a0+a1(x-1)+a2(x-1)^2+.+a5(x-1)^5,

问题描述:

若(1-2x)^5=a0+a1(x-1)+a2(x-1)^2+.+a5(x-1)^5,
则a1+2a2+3a3+4a4+5a5=?

(1-2x)^5=a0+a1(x-1)+a2(x-1)^2+.+a5(x-1)^5则设f(x)=(1-2x)^5求导数得:f'(x)=5[(1-2x)^4]*(-2)=-10(1-2x)^4且f'(x)=a1+2a2(x-1)+3a3(x-1)^2+4a4(x-1)^3+5a5(x-1)^4令x=2则:(1-2*2)^4=a1+2a2+3a3+4a4+5a5即:a1+2a...