连续性随机变量
问题描述:
连续性随机变量
试证明边疆性随机变量ε,若在有限区间内取值,则它的数学期望E(ε)不小于这个区间左端点的值和不大于这个区间右端点的值.
试证明连续性随机变量ε,若在有限区间内取值,则它的数学期望E(ε)不小于这个区间左端点的值和不大于这个区间右端点的值。
答
针对补充问题:
设有限区间为[a,b],连续型随机变量ε的密度函数为f(x),且由密度函数性质得f(x)在[a,b]的积分为1
则E(ε)=∫x*f(x) dx >= ∫af(x)dx=a,积分区间为[a,b]
期望小于等于b同理
#