∫(1/e,e)x|lnx|dx我的计算过程.、(1/2)∫(1/e,e)|lne|d(x^2)=(1/2)x^2|lnx|(1/e,e)-(1/2)∫(1/e,e)xdx=(1/2)e^2-(1/2)1/e^2-(1/2)1/2x^2(1/e,e)=(1/2)e^2-(1/2)1/e^2-(1/4)e^2+(1/4)1/e^2=(1/4)e^2-(1/4)1/e^2
问题描述:
∫(1/e,e)x|lnx|dx
我的计算过程.、
(1/2)∫(1/e,e)|lne|d(x^2)
=(1/2)x^2|lnx|(1/e,e)-(1/2)∫(1/e,e)xdx
=(1/2)e^2-(1/2)1/e^2-(1/2)1/2x^2(1/e,e)
=(1/2)e^2-(1/2)1/e^2-(1/4)e^2+(1/4)1/e^2
=(1/4)e^2-(1/4)1/e^2
答