已知sin(θ+kπ)=-2cos(θ+kπ)(k∈Z).求: (1)4sinθ−2cosθ5cosθ+3sinθ; (2)1/4sin2θ+2/5cos2θ.

问题描述:

已知sin(θ+kπ)=-2cos(θ+kπ)(k∈Z).求:
(1)

4sinθ−2cosθ
5cosθ+3sinθ

(2)
1
4
sin2θ+
2
5
cos2θ.

当k为偶数时,sin(θ+kπ)=-2cos(θ+kπ)(k∈Z)化简得:sinθ=-2cosθ,即tanθ=-2;
当k为奇数时,sin(θ+kπ)=-2cos(θ+kπ)(k∈Z)化简得:-sinθ=2cosθ,即tanθ=-2,
(1)原式=

4tanθ−2
5+3tanθ
=
−8−2
5−6
=10;
(2)原式=
1
4
sin2θ+
2
5
cos2θ
sin2θ+cos2θ
=
1
4
tan2θ+
2
5
tan2θ+1
=
1+
2
5
4+1
=
7
25