如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是(  )A. 3个B. 2个C. 1个D. 0个

问题描述:

如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是(  )
A. 3个
B. 2个
C. 1个
D. 0个

∵△DAC和△EBC均是等边三角形,
∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠BCD,
在△ACE和△BCD中

AC=CD
∠ACE=∠BCD
BC=CE

∴△ACE≌△DCB(SAS);∴①正确;
∵∠ACD=∠BCE=60°,
∴∠DCE=180°-60°-60°=60°=∠ACD,
∵△ACE≌△DCB,
∴∠NDC=∠CAM,
在△ACM和△DCN中
∠CAM=∠CDN
AC=CD
∠ACM=∠DCN

∴△ACM≌△DCN(ASA),
∴CM=CN,AM=DN,∴②正确;
∵△ADC是等边三角形,
∴AC=AD,
∠ADC=∠ACD,
∵∠AMC>∠ADC,
∴∠AMC>∠ACD,
∴AC>AM,
即AC>DN,∴③错误;
故选B.
答案解析:根据等边三角形性质得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根据SAS证△ACE≌△DCB,推出∠NDC=∠CAM,求出∠DCE=∠ACD,证△ACM≌△DCN,推出CM=CN,AM=DN,即可判断各个结论.
考试点:全等三角形的判定与性质;等边三角形的性质.
知识点:本题考查了等边三角形的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力和辨析能力.