函数y=√5+2x-x²的最大值为

问题描述:

函数y=√5+2x-x²的最大值为

√5-1

最大值√5+1
y= -(x^2-2x+1)+1+√5= -(x-1)^2+1+√5
-(x-1)^2y

y=√(5+2x-x²)
=√[-(x²-2x-5)]
=√[-(x²-2x+1)+6]
=√[-(x-1)²+6]
当x-1=0,即x=1时,函数y=√5+2x-x²取到最大值,最大值=√6