高一对数方程

问题描述:

高一对数方程
解方程 x^log2(x)=32x^4 x的log2(x)次方=32*x的4次方
x^log2(x)=32x^4 即x的log2(x)次方=32*x的4次方

x^log2(x)=32x^4
两边同时取以2为底的对数,则有log2[x^log2(x)]=log2(32x^4)
log2(x)*log2(x)=log2(32)+log2(x^4)
[log2(x)]²=log2(2^5)+4log2(x)
[log2(x)]²=5+4log2(x)
[log2(x)]²-4log2(x)-5=0
[log2(x)-5][log2(x)+1]=0
log2(x)-5=0或log2(x)+1=0
log2(x)=5或log2(x)=-1
∴log2(x)=5=log2(2^5)=log2(32),x=32
或log2(x)=-1=log2(1/2),x=1/2
x=32或x=1/2